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FOREWORD 

This report was prepared under NASA Contract NAS 8-11494 and is 
one of a series intended to illustrate.methods used for the design and analysis’ 
of space vehicle flight control systems. Below is a complete list of the reports 
in the series: 
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Volume VII 
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Volume IX 
Volume X 
Volume XI 
Volume XII 
Volume XIII 
Volume XIV 
Volume XV 
Volume XVI 

Short Period Dynamics 
Trajectory Equations 
Linear Systems 
Nonlinear Systems 
Sensitivity Theory 
Stochastic Effects 
Attitude Control During Launch 
Rendezvous and Docking 
Optimization Methods 
Man in the Loop 
Component Dynamics 
Attitude Control in Space 
Adaptive Control 
Load Relief 
Elastic Body Equations 
Abort 

The work was conducted under the direction of Clyde D. Baker, 
Billy G. Davis and Fred W. Swift, Aero-Astro Dynamics Laboratory, George 
C. Marshall Space Flight Center. The General Dynamics Convair program was 
conducted under the direction of Arthur L. Greensite. 
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1. STATEMENT OF THE PROBLEM 

It has been said that to define adaptive control is to invite an argument. In- 
deed the phrase is fraught with emotional overtones both for those to whom it repre- 
sents a potential (if not present) panacea, and for those to whom adaptive control is at 
best an ambiguous aspiration having no cohesive structure within which a sound unified 
theory can be formulated. 

Within the context of the present monograph, which is limited to adaptive con- 
trol of space launch vehicles, the term adaptive control will be applied in a limited 
sense. It is generally agreed that adaptive control as a design philosophy enters the 
picture when a control system cannot be adequately designed a priori to cops with a 
changing or unknown environment. There are two fundamental aspects to this problem: 
identification and control function manipulation. The adaptive control of space launch 
vehicles exhibits both of these features. 

The question of adaptive control for a launch vehicle autopilot must begin with 
a discussion of the problems of conventional control. 

The optimum design of a space launch vehicle, from an overall performance 
point of view, maximizes payload and minimizes structural weight. Minimum struc- 
tural weight results in increased flexibility (i.e. , the ability of the vehicle to bend), 
which in turn has an adverse effect on the attitude control system. 

The purpose of the attitude control system is to determine and maintain the 
direction of vehicle travel. A boost vehicle is similar to a long rod that bends in two 
ways when forces are placed upon it. The first is a steady-state bend equivalent to 
the sag in a rod when it is supported horizontally at both ends. The second is an oscil- 
latory bend by the rod if a weight is dropped on it. This oscillatory bending tends to 
die out unless it is continually forced and excited as in the case of the control system 
continually applying forces to the vehicle. The system must be designed so that it 
does not increase bending beyond safety margins. The vehicle attitude sensor, rigidly 
attached to the vehicle, also measures bending at the sensor location. The attitude 
control forces computed from the sensor output are thus partially determined by the 
bending magnitude at the sensor. Factors depending upon the relative bending direction 
at the sensor locations and the attitude control force point, plus delays in complting 
the attitude control force magnitude from the sensor output, determine whether the 
applied force increases or decreases any bending that may exist. The effects of com- 
putational delays are directly dependent upon the oscillatory frequency of the bending. 

A normal control system for a flexible vehicle does not allow high frequencies 
to pass through to the force point, thus eliminating the reinforcing of high-frequency 
oscillatory bending modes. Computational delays are so designed that the low-frequency 
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oscillatory bending modes are suppressed by the control forces rather than reinforced. 
However, with very large and very flexible vehicles a normal control system design 
may be inadequate. For very flexible vehicles the bending oscillatory frequencies be- 
come low enough that even the higher modes cannot be filtered out without detrimental 
effects upon attitude control. With large vehicles it is impossible to predetermine the 
bending oscillatory frequency to the accuracy required to adjust the computational de- 
lays in a manner to guarantee control. 

A detailed quantitative discussion of these factors is contained in Ref. 1. The 
main problems from a controls point of view may be summarized as follows: 

a. Bending mode frequencies are not known with sufficient precision. 

b. Bending mode properties vary with flight time. 

C. The lowest bending mode frequency may be of the same order of magnitude as 
the control frequency. 

Many schemes have been devised to cope with these problems. They have 
been called “adaptive” since the control system parameters vary (adapt) as a function 
of flight environment. A discussion of these concepts forms the subject matter for the 
present monograph. 
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2. STATE OF THE ART 

A discussion of adaptive control cannot proceed without at least a tentative de- 
finition. One widely accepted is that an adaptive control system can monitor its own 
performance, evaluate the effectiveness of its response, and then modify its param- 
eters automatically to achieve desired performance. When applied to a launch vehicle 
autopilot this implies that the adaptive control system will identify an unstable bending 
mode frequency, and activate some suitable compensation device to stabilize the sys- 
tem. This compensation may take the form of cancellation, phase stabilization, or 
gain stabilization. The cancellation technique, as typified by the model-reference or 
virtual slope methods, for example, makes the sensor outplt behave as if the sensor 
were located on an antinode (point of zero bending mode slope). Phase and gain sta- 
bilization techniques depend on an accurate identification of the bending mode fre- 
quency since these modes are highly tuned (very low relative damping factor). In 
some cases signal shaping by conventional filtering is inadequate since the signals to 
be separated do not have a sufficiently large frequency separation. The digital adaptive 
filter and frequency-independent signal processing techniques have been developed to 
cope with this problem. 

One thing is certain. Adaptive control has not suffered from a lack of attention 
in the literature. Neither has Air Force or NASA funding been lacking for pursuing 
investigations of par titular comepts. Yet today, some ten years after adaptive control 
began to be studied intensively, very few adaptive systems have reached the flight test 
stage (these mainly on aircraft), and none are operational. A partial answer is that 
so-called conventional methods have been refined considerably, and the point at which 
adaptive control becomes mandatory has never been clearly defined. There is a con- 
siderable (and understandable) reservation in committing oneself to complicated and 
exotic control schemes where multimillion dollar vehicles are concerned if their need 
has not been clearly established. 

At present, conventional and straightforward control methods appear adequate. 
However, if past experience is any indication, one will assuredly be confronted with 
problems that strain the capabilities of current technologies. When this occurs, ad- 
vanced schemes presently in the “drawing board” stage will be evaluated under actual 
operating conditions and thus serve both to refine and enlarge these concepts presently 
called “adaptive control. ” 
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3. RECOMMENDED PROCEDURES 

The following paragraphs describe the major bending mode adaptive techniques. 
They also provide a critical evaluation of the virtues and limitations of each type. To 
date, none of these schemes has ,,been flight tested, although many of them have been 
thoroughly simulated (via computer) with varying degrees of complexity. Consequently, 
while different Government agencies and aerospace contractors have their preferences, 
there is no universal agreement that any one type represents a definitive solution to the 
problem. 

At present, conventional linear techniques seem to be adequate for the current 
generation of booster vehicles(2). The methods presented here are therefore to be 
interpreted as possible solutions if and when more advanced vehicles exhibit bending 
control problems that cannot be resolved by today’s methods. 

In order to simplify the presentation, and provide a common framework for 
analysis and comparison of the different methods, each will be discussed with refer- 
ence to the mathematical model described in the Appendix. 

3.1 MODEL-REFERENCE TECHNIQUES 

The! basic idea of emplo 
z;i” 

g a model to obtain improved system response is 
apparently due to Lang and Ham ( ). However, in its original version this was merely 
a disguised high-gain system in which prefiltering together with high open-loop gain 
were used to achieve relatively invariant response in the presence of parameter vari- 
&ions. The methodology may nevertheless be applied in different ways in order to 
satisfy prescribed objectives. Two particular extensions of this philosophy to the 
bending mode problem are described next. 

3.1.1 Whitaker (MIT) System 

The model-reference adaptive control concept was originally proposed and 
investigated at the MIT Instrumentation Laboratory. It was evolved to enable design of 
a control system that could adjust its own controllable parameters in the presence of 
changing or poorly defined operating characteristics. The underlying philosophy has 
been to provide a control system that will meet system specifications provided its 
variable parameters can be adjusted to proper values. The function of the adaptive 
system is then that of providing the proper parameter values. 

Figure 1 is a functional diagram of a general model-reference adaptive flight 
control system. The system specifications are incorporated into a reference model 
that receives the same commands as the actual system. A response error signal is 
obtained by comparing the response of the model to that of the system. The 
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Figure 1. Simplified Functional Diagram of a Model-Reference Adaptive 
Flight Control System 

controllable parameters are adjusted so that the integral-squared error between sys- 
tem and model outputs is minimized. The index of performance is then the integral- 
squared response error, and the criterion for successful adaptation is that the integral- 
squared error (ISE) be the minimum value obtainable with the parameter variation 
provided. 

/ 
(E)2 dt = minimum (1) 

At the desired operating point the slope of the lSE as a function of the variable param- 
eters Pn is zero, or 

an 
aP1,aP2, l -•,aP 

n 
(2) 
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If the limits of integration are independent of P, and the integral of the partial deri- 
vative of the function exists, the partial differentiation may be carried out under the 
integral sign, resulting in the error quantity 

(EQlpn = &-pj2 dj = j-$f dt = 2j(e)E dt 

= J WE W (E) dt 

The error quantity is the integral of the error weighted by a function such that the 
error quantity is indicative of the state. of the system. The sign and magnitude of the 
error quantity indicates the direction and amount that the variable parameter should 
be changed. A simple mechanization results if the change of the parameter is made 
proportional to the error quantity. ‘Ihe weighted error is then proportional to a time 
rate of change of the parameter which will result in setting the parameter to the desired 
operating point. The integration of Eq. (3) may then be carried out in the parameter 
adjustment device. 

The weighting function is determined by performing a straightforward partial 
differentiation of the differential equation for the error as a function of the input 
quantities, or by considering the change in the parameter as a disturbance entering 
the system after the parameter. The error weighting function can be generated by 
taking the signal at the input to the variable parameter and feeding it through a filter 
having the same performance function as the system, cascaded with a filter that is the 
reciprocal of some of the forward path components. It is not possible to obtain a sig- 
nal that exactly satisfies the equations since the ill-defined or unknown characteristics 
of the system is what leads to the requirement for the adaptive system. An approxi- 
mation to Eq. (3) is obtained by substitution of the performance function of the model 
for the performance function of the system. In cases where a system model does not 
exist explicitly, Eq. (3) may be approximated by using an approximation for the dy- 
namic characteristics of the optimum system. 

The validity of this approximation depends upon the accuracy of the approxi- 
mation of the system by the model and the weighting function filter. In the, neighborhood 
of optimum response, this approximation is good. For system parameter settings far 
removed from optimum the approximation is poor; however, if the algebraic sign of 
the weighting function is correct, proper system operation is obtained. Even though 
the weighted error has the incorrect sign instantaneously, satisfactory results are ob- 
tained if the error quantity has the proper sign over the evaluation period. The derivation 
of these equations is based on the assumption of the constant coefficient linear system. 
When the parameters are varied during the response to input signals, these equations 
are in error by perturbation terms. 



Because of the nonlinear nature of the system, operation can best be studied 
by analog simulation. Simulation is’also required to evaluate the use of the approxi- 
mate dynamics in the weighting function filter. It is to be expected that the operating 
state selected by the adaptive system will not be the optimum operating state predicted 
by the exact Eq. (2), but will have some error due to the approximations. It has been 
found that these errors are usually small and the characteristics of the weighting func- 
tion filter usually are not critical. 

In applying the above concepts to the elastic vehicle control problem, we must 
begin by defining two quantities: 

a. The performance index. 

b. The parameter(s) to be varied. 

In order to provide the adaptive capability, it is also necessary to define a 
model that incorporates the system specifications and to obtain a response error that 
is indicative of the state of the system. The most desirable situation would be elimi- 
nation of the bending, in which case the “model” is zero and the response error is the 
bending itself. Thus we may take as a performance index, 

P-1. = 2 dt (4) 

where q(l) is the generalized coordinate of the first bending mode.? The control sys- 
tem to be described is then adaptive only with respect to this mode. 

We must now choose the parameter to be varied in order to minimize Eq. (4). 
For this purpose, Kezer(4) takes the “effective bending” sensed by the rate gyros. 
Such a signal may be obtained, for example, by taking the difference between the out- 
puts from two gyros located at different positions along the vehicle; thus 

The quantity DE(l) is selected as the parameter to be varied in order to mini- 
mize Eq. (4). Proper operation of the system then requires that 

tThe nomenclature used in the following discussion is defined in the Appendix. 
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The system is nclw made adaptive by setting the rate of change of oGtl) pro- 
portional to 

q(i) as(l) 
( > aaEtl) (6) 

To do this we must have available both q(l) and aq(‘)/auE(l). The latter may 
be determined directly from the equations of motion of the system. Referring to Fig. 
2 and the Appendix, we have? 

( ) S2 -ua BR = UC6 

% 

K 
c VEHICLE 
s+K DYNAMICS 

I hill LTII’LIEI~ b-l Wl~lGlITING 
FILTER 

Figure 2. MIT Adaptive Control System 

(7) 

(8) 

(9) 

(10) 

tit is assumed that KI ‘c’ 0 and ~1: * fj. 
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8, = !R 
+ a (1) q(l) + 

G R + =GR 
(1) q(l) 

> 

where 

OE 
(1) _ (1) 

- OGR 
(1) 

-OGF 

and 

(1) 
uGR 

= Q (1) 
G 

From Eqs. (7) through (11)) we find that q(l) is related to 8, by 

Go 1s) q (l) = - 

I 

where 

Go W = [(s2-lrar)(s+Kc)+KAKc~c(~s+1)](s2+2~~wls+w~) 

(l) (13) 

Taking the partial derivative df Eq. (12) with respect to o,(l), we find 

aq(l) 
Go @I- - 

a0 W 
E 

or 

aq(l) KAKC’kTC(s2-$J - = 
au (') 

E 
ml Go (~1 

(14) 
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If the transfer function for the weighting filter is taken as 

Gw W = 
KA Kc Tc ‘(g2 - Ia> 

fl 1 Go (s) 

and if the input is KR UK (1) $1) , we see that the output of the weighting filter is the 
quantity 

(15) 

OE 
(1) aq(l) 

c > a CT~(') 

Furthermore, the output of the integrator is 

KR”E 
(1) qw 

and it follows that the multiplier output is 

s [OE(l)12 (3) q(l) 

(16) 

(17) 

(18) 

i.e. , proportional to the error quantity, Eq. (6). This signal is used to adjust the 
sign and magnitude of the gain X. A steady-state value is achieved when the multiplier 
output is zero, which indicates that the first bending mode signal has been essentially 
eliminated from the “blended” rate gyro feedback. 

Some typical results of a computer simulation for this system are shun in 
Fig. 3. The input 0, was a square pulse in each of the three cases shown. In the 
first case, with the adaptive loop open, it is apparent that the bending mode signal is 
poorly damped. The improvement in response for the next two cases (where the 
adaptive system is employed) is quite evident. 

Remark: The MIT adaptive system is an elegant and conceptually sound approach to 
the bending mode problem, and has an obvious appeal to the theoretically 
inclined. The system is fast acting, and acts on either common or distur- 
bance inputs with equal effectiveness. Studies have shown that the multiplier 
may be replaced by a relay, and that the integrator (for generating q(l)) may 
be replaced by ‘a low pass filter. It is thus relatively simple to mechanize. 

On the other hand, the scheme is effective only when one bending mode 
is significant and well separated in frequency from the other modes. 
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Figure 3. Response Characteristics of MIT Adaptive System 

It should be noted also that the weighting filter is of necessity an ap- 
proximation since, as is apparent from Eqs. (15) and (13), some estimate 
is necessary for the fl 1, a(l) and w1 values that are not known; hence the 
need for adaptive control. Furthermore, the quantities p, and cc, are time 
varying, and various higher-order dynamic effects are neglected. These 
factors are not usually crucial, however; it means essentially that the 
error quantity, Eq. (6), will not attain a zero value. Adaptive control is 
still exhibited in the sense that corrections are applied (by varying X in 
Fig. 2) to reduce the error. How well this is done is a function.of how well 
the weighting filter approximates the “optimum” filter. 

3.1.2 Tutt and Waymeyer System 

A ‘brute force” approach to the problem of separating rigid body from bending 
mode signals is by using passive low pass linear filters on the rate and displacement 
gyro outputs. It is well known that this approach results in sn unacceptable deterio- 
ration in rigid body response. In order to recover rigid body motion signals, one 
could conceivably employ predicted attitude and rate information from a model of the 
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rigid body dynamics of the vehicle. Such a scheme is shown in Fig. 4. The engine 
angle signal 6 is fed to a model of the rigid body dynamics, which requires a know- 
ledge of the control and aerodynamic moment effectiveness, pc* and pa*, respec- 
tively (asterisks denote “model” parameters). The attitude rate output from the 
model, 8,, is then multiplied by KK, the rate gyro gain, fed through a high pass fil- 
ter, and summed with the actual rate gyro output after the latter was fed through a 
low pass filter. This sum is used as the rate feedback to the system. Thus the rate 
gyro information is heavily filtered to reject bending mode signals, and a “clean” 
rigid body rate signal is obtained from a model of the rigid body dynamics. 
procedure is applied to the attitude displacement information. 

6 K 
c 

KA - 
c 6 \‘EIIICLE 

s +K * DYNA hIICS 
c 

MODEL 1 ( 

I r---------------- l 1 1 RATE 

I ! . I i 

A similar 

I 
DISPLACEMENT 

GYRO I 

Figure 4. Model Reference Adaptive System 

I 

In accordance with this control philosophy it would appear that one could 
generate “model” attitude and rate information from a configuration of the form 
shown in Fig. 5. However, it is not possible for h* to operate only on computed in- 
formation, since a closed-loop pole-zero pair would appear in the right-half s-plane, 
and these would cancel only if k* = pear exactly. Therefore the configuration shown in 
Fig. 4 is used where pa* is acted upon by a combination of computed and actual body 
attitudes. 

A crucial factor in the model reference approach is the required accuracy in /,L~* 

ad/+,& of which the latter is the more critical. Computer traces for attitude rate in 
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. 

6 
s* 

1 ‘M -1 8M - - 
s S 

Figure 5. Alternate Model Configuration 

response to step input commands in 6, are shown in Figs. 6 and 7 for pa* 15% less 
than and 15% greater than pa, respectively. These traces indicate (and analytical 
studies verify) that the tolerance on /&* (with respect to po) should be heavily weighted - 
toward the positive &* > pa). 

i 

4 

3 

2 

I 

0 
n 1 2 3 4 

t (5x) 

Figure 6. Command Response with 
/Ia* = 15% Less Than & 

, -0 I 2 3 4 

t (set) 

Figure 7. Command Response with 

PO! * = 15% Greater Than @a 

In Fig. 8 are shown the rate response traoes due to a step wind disturbance 
for both model feedback and conventional systems, each with the same system param- 
eters. The very poor response for the model feedback system was to be expected since 
actual body motion is not generated solely by engine deflection. In the configuration of 
Fig. 4 the engine responds only to the heavily filtered real body loop. 

Since for a realistic launch vehicle the wind inputs are often the predominant 
inputs to the system, the model-reference configuration of Fig. 4 is clearly inadequate. 
Various modifications are proposed by Tutt and Waymeyer(5), of which all are based 
essentially on some form of angle-of-attack sensing. The problem is to obtain some 
sort of disturbance information without re-introducing the bending previously rejected. 
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To do this we may adopt the 4 
same control philosophy used in the attitude 
and rate loops; namely to use sn actual 
value and a “model reference” value for 3 
angle of attack, which is combined and 
used as an additional feedback loop for the 
control system. The system would then 2 

take the form shown in Fig. 9. The sche- 6 
matic for the Q model is derived from 
Eqs. (Al) and (A2) of the Appendix with 1 

TC 

Ni = - 
Lor 

mU 
Na = - 

mU a 
0 0 

Q 
W 

=- 

M U 
0 

Figure 8. Rate Response to Step 
The degree of improvement in Disturbance 

disturbance response for a typical case is 
shown in Fig. 10, in which are superimposed the responses for systems denoted as 
conventional, male1 feedback, and model feedback with CY sensing. Use of cy sensing 
thus yields a significant improvement. Whether this improvement is good enough is 
something to be determined for the specific mission considered. 

Remark: The model reference system is very effective when certain rather stringent 
requirements are satisfied. First the rigid body parameters (mass, 
moment of inertia, center-of-gravity location, aerodynamic properties) 
must be accurately known as a function of flight time. Second, and more 
important, disturbance effects must be minimal. In other words the vehicle 
motion must be derived primarily from command inputs. This condition is 
obviously not satisfied for ballistic booster vehicles, and various additional 
complexities must be introduced in the control system to take account of 
disturbance inputs. 

It may be noted in passing that if the rigid body model is accurate, one 
may dispense with the rate gyro entirely. 

Many aspects of the model reference control scheme require further 
investigation. A basic element of the system is the rigid body model, and 
it is necessary to determine the sensitivity of the system performance to 
variations in the rigid body “model” parameters. In a realistic system the 
“model” is essentially a filter with nonstationary parameters. For both 
analytical and pragmatic reasons this is an undesirable situation, and it 
would be important to determine if gain switching at preselected intervals 
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Figure 10. Comparison of Response to Wind Inputs 

could replace continuous variations in pc* and par*. Another open question 
at present is the choice of break frequencies in the high and low pass filters. 
This must obviously be decided for each specific vehicle and depends pri- 
marily on the frequency separation between rigid body and first bending 
mode signals. When these are in fairly close proximity, the effectiveness 
of the model reference scheme appears marginal. 

It has also been argued that the model reference scheme is not an 
adaptive system at all. Since the control configuration is predetermined 
and there is neither identification of system parameters nor their control 
as a function of environment, it is not reasonable to claim that this system 
is adaptive. However, this could motivate an involved digression in 
semantics, and we must resist the temptation to pursue it further. 

3.2 VIRTUAL SLOPE METHODS 

If the vehicle bending modes were known precisely, then a simple means of 
suppressing bending mode signals for a particular mode would be to locate the gyros 
on an antinode (point of zero slope) for that mode. However, even if the bending 
mode data were known precisely as a function of flight time, the antinode location 
(and other bending mode data) varies with time so that one specific location for the 
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gyro is not satisfactory throughout the flight regime. Conceptually, one may visualize 
a gyro moving along the vehicle such that it constantly tracks the desired antinode. This 
is obviously a fanciful notion, but it is possible to formulate a control scheme that ef- 
fectively performs this function by other means. Two methods of achieving this are 
described next. 

3.2.1 Gyro Blending 

The essential idea for the gyro blending scheme is motivated by the following 
considerations. Suppose that two rate gyros located at different points along the ve- 
hicle are used. The output of the rear rate gyro ist 

uGR 

and similarly for the forward rate gyro; viz. 

(19) 

If it is assumed that the only significant bending mode is i=l, we may proceed 
as follows. Multiply Eq. (19) by some number K, and multiply Eq. (20) by (K-l). Add- 
ing the result, we have 

s 4 + s [ (1 - K) oGR(‘) + K OFF] q(l) (21) 

In order to obtain a signal free of bending mode information, we see that K 
must satisfy the relation 

(1 - K) OCR(‘) +Ko GF(1) = 0 

Under suitable conditions this operation may be made automatic, and the re- 
sulting control system configuration has the general form shun in Fig. 11. It remains 
to investigate the means whereby K is made to satisfy Eq. (22) automatically. 

Referring to Fig. 12, which shows the blender operation in detail, suppose that 
the rate gyro signals attenuated by (1-K) and K respectively, are passed through band- 
pass filters designed to reject all signals outside the anticipated frequency range of the 
first bending mode. The signal appearing at the input of the integrator is then 

tSee the Appendix for definitions of nomenclature. 
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i = i(l _ K) u (l) G”‘l _ IKu 
GR 

(l) fi’l)j 
GF 

It is apparent that a steady-state condition (E=O) is reached when K satisfies 
Eq. (22), which is precisely the condition required for the blender output to be free of 
bending mode signals. 

Since K, which is a potentiometer setting between zero and one, must always 
be positive, a fundamental requirement for proper operation of this system is that the 
mode slopes at the two gyro locations be of opposite sign at all times. 

Remark: This scheme is workable only if there is assurance that certain prescribed 
conditions are satisfied. First of all this method requires that the bending 
mode slopes at the gyro locations always be of opposite sign. Usually this 
condition prevails only for the first bending mode. Furthermore, effective 
operation of the bandpass filters requires that there be a moderate frequency 
separation between rigid body mode and bending mode signals on the one 
hand, and between first bending mode and other dynamic modes of the system 
on the other. If this condition does not prevail, the integrator will not null 
properly, the correct value of K will not be established, and the rate feed- 
back signal will therefore contain bending mode information. 

3.2.2 Phasor Cancellation 

As in the previous system, the aim of the phasor cancellation concept is to 
yield a feedback signal free of bending mode signals by an operation that effectively 
locates the gyros at an antincde. The essential idea may best be &scribed by exami- 
ning the Fourier decomposition of the feedback signal; viz. 

eF’ = & EiSh(uit+G$ (23) 

Each of the terms on the right-hand side of this equation is a phasor, E., with 
ampl_itude Ei and phase angle ai. We may associate E. with the rigid body modeland 
the Ei with the bending modes. It will again be assumed that only the first bending 
mode is significant. 

The adaptive system described here generates a phasor whose amplitude and 
phase angle are identical to E 

fl 
, and subtracts this from the feedback control signal, 

thereby giving a signal free o first bending mode information. The method is illus- 
trated schematically in Fig. 13. In Fig. 14 are shczvn the frequency response char- 
acteristics of the adjustable b&dpass filter. To analyze the operation of the system, 
assume that uF is equal to &! 1, the first bending mode frequency. Then the output of 
the adjustable bandpass filter is a signal whose amplitude and phase are equal to that 
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of the first bending mode signal, with all other frequencies sharply attenuated. There- 
fore subtracting this from (3; gives a signal essentially free of first bending mode 
information. 

The function of the adaptive controller is to track the bending mode frequency 
and set WF equal to w1 at all times. This may be accomplished in the manner shun 
in Fig. 15. In general WF will not be equal to 01 which means that the bending phasor, 
after passing through the adjustable bandpass filter, will incur a phase shift, A# 1 (see 
Fig. .14). This signal, after then passing through the secondary bandpass filter, will 
incur another phase shift approximately equal to Ae1 if uF is not too far from w1 (this 
means essentially that w1 is such that operation is along the nearly linear portion of 
the phase shift curve in Fig. 14). Thus A#J~ is a measure of the deviation of WF from 
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Figure 15. Detail of Adaptive Controller 

Now the outputs from limiters No, 1 and No. 2 are 

A sin w1 t 

and 

A cos 
> 

respectively; The amplitude ‘A Is constant due to the limiters. 
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The output of the multiplier is then 

If A& is small such that sin A$1 M A&, this last relation may be written as 

A2 
2 31 
The second term, which is a ljhasor of twice the bending mode frequency, is 

sharply attenuated by the integrator. Thus the output of the multiplier is essentially 
proportional to A4/$. The integrator outplt adjusts + in both bandpass filters in such 
a way as to drive At)1 to zero; that is, until WF = wl. 

The results of an analog computer simulation of this system are shown in 
Fig. 16. 
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Figure 16. Analog Computer Trace, Initially Unstable Bending Mode 
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The filter was tuned to 10 radlsec with the bending frequency at 23 rad/sec. 
(This simulates a bending frequency increase of greater than 100% in a step fashion. 
The bending was excited by a one-degree surface command.) The WF trace clearly 
demonstrates the tuning action.. Referring to the trace of the bending mode, q(l), it 
can be seen that the bending is unstable with the filter not tuned to the bending fre- 
quency . The bending magnitude reached a maximum peak of ti. 09 foot while the filter 
was being tuned to the bending frequency. The filter output then canceled the bending 
oscillation sensed by the rate gyro and displacement gyro. 

The double bending frequency component of the multiplier output is seen im- 
pressed on the WF trace. This term is greatly attenuated and does not present a 
problem. 

The effect of varying the integrator gain, k, is shown in Fig 17. With k set at 
400, the adaptive loop was marginally stable. In the lower trace, with k set at 150, the 
adaptive loop gain was too low, and consequently the tuning action was sluggish with 
considerable overshoot. The value of k ,= 250 used in the traces of Fig. 16 represents 
a compromise value, and results in a filter “lock on” time of approximately three 
seconds. 
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“F-0 

a. High Adaptive Loop Gain 

- -20 RAD/SEC 

k = 150 

b. Low Adaptive Loop Gain 

Figure 17. Effect of Variation in Integrator Gain, k 
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The operation of the filter when the vehicle is exposed to a random disturbance 
such as 01 gusts is shown in Figure 18. White noise was introduced into the 01 equation 
to simulate gust disturbances. The filter was offset to 10 rad/sec, and the bending 
frequency was 22 rad/sec. The filter tunes to the bending frequency and cancels the 
bending signal to prevent an unstable condition. 

Remark: The phasor cancellation scheme exhibits excellent bending mode suppression 
characteristics when only one bending mode is significant. However, its 
performance deteriorates sharply when the bending mode frequency is very 
near the rigid body frequency. This results from the tendency of the filter to 
attenuate the short-period control frequencies as well as the bending mode 
components. 

3.3 DIGITAL ADAPTIVE FILTER 

As has been pointed out repeatedly, the essential problem in autopilot control 
of launch vehicles is the fact that signals reflecting the structural vibrations appear at 
the input to the control actuator. hi many cases the phase relationships are such that 
the feedback loops amplify the magnitudes of these signals leading to catastrophic 
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- -0.025 
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Figure 18. Analog Computer Trace, Response to Random Disturbance 
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instability. Because of the fact that the bending and rigid body (control) frequencies 
are not well separated, conventional passive filtering is not always effective. This is 
in a sense intuitively apparent since if there are no sharp distinguishing features be- 
tween two groups of objects, the separation cannot be sharp; in short there is a large 
“grey” area. 

As long as one thinks in terms of separating signals on a frequency basis 
alone, this dilemma remains. However, in a launch vehicle control system the bend- 
ing and control frequencies, while in close proximity in a frequency sense, are usually 
widely separated in relative damping factor. Typically a control mode has 5 = 0.6 to 
0.8 while for the bending mode 5 = 0.005 to 0.02. This fact forms the basis for an 
elegant and sophisticated scheme due to Zaborsky @ 9 7, which he termed Digital Adaptive 
Filtering. 

The main idea involves identifying the dynamic modes in a given signal, after 
which the signal may be decomposed and expressed as a sum of individual modes. The 
effectiveness of this procedure requires that these modes be well separated in the s- 
plane; frequency characteristics, as such, play no unique role. After the signal de- 
composition has been accomplished, only predetermined modes may be passed on to 
the control system with the result that there is theoretically perfect suppression of 
undesired modes. 

The crucial elements in this technique are the identification and decomposition 
features. It is appropriate, therefore, to motivate the discussion by considering the 
general aspects of this problem. 

We assume that the transfer function for the system under consideration has 
the form 

V(s) - = G(s) 
U(s) 

k . 

c a. s1 
i=O 

1 
= 

n 

c 
i=O 

bi s1 I 
(24) 
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or 

The output v(t) and its first (n-l) derivatives have the initial values 

- = p (0) di v(t) 
. 

d t’ 
i = 0, 1, 2, m=*, (n-l) 

One may then write the Laplace transform of the output as 

V(s) = 

.k . 
c 
i=O 

ai s1 

n 

c i=O 
bi s1 

n-1 ,(i) ’ 
c (0) 2 bj sj-*-’ 

U(s) + 
i=() ’ j=i+l 

n 

c 
i=O 

bi si 

The system input is written as 

h 
u(t) = cRiti 

i=O 

h i! R 
U(s) = c 

i 
- 

i=O s 
i+l 

find 
Substituting this into Eq. (25) and taking a partial fraction expansion, we 

n-g K 
V(s) = c 

X 
g+h+l Dw 

-+ 
c- 

x=1 
S- 

pX w=l s 
W 

(25) 

(26) 

(27) 

(28) 

where g is the order of the singularity of G(s) at ~0. 

If there are y real poles and n-g-y complex poles, then the inverse Laplace 
transform of Eq. (28) becomes 

v(t) = 5 Kx c 
x=1 

Pxt + 2 2 IIq “” cos(/?4x t + &) 
x-y+1 

g+h+l Dw tw-’ 
+ 

c 
W=l (w - 1) ! (29) 
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Here the second summation extends over the complex poles in the upper half 
s-plane. For present purposes it is presumed that the form of v(t) as shown by Eq. 
(29) is lumwn. However, the parameters 

Kx and px x= 1, 2, l **, y 

KX = lIs,l& 

I 

x = (y+l), l l l , (n-g) 

and px = -ax + iS, 

DW 
w = I, 2, ..-, (g+h+l) 

are unknown. As shown above, these constitute a total of (2n-g+h+l) parameters.? In 
order to identify these, we may take a total of (2n-g+h+l) measurements of v(t), there- 
by giving the proper number of equations that in principle may be solved for the above 
unknowns. 

A more feasible procedure from a practical point of view is to identify these 
parameters by means of a least-squares procedure. 

Suppose for example we observe the M values (where M > 2n - g + h + 1) 

and define the quantity 

(39) 

where W(i) is an optional weighting factor. For example it might be desired to weigh 
recent measurements more heavily than others. Then the condition for a least- 
squares fit becomes 

Min 2 F2 ctN-M+i) 
px, Kx, Dw i=l 

(31) 

tOne may without loss of generality assume that b,=l in Eq. (24) in which case the 
number of unknown parameters becomes Bn-g+h. 
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This leads to the (an-g+h+l) equations 

$ (I? . F) = 0 
X 

x = 1, 2, l =*, (n-g) 

& (F . F) = 0 
X 

x = 1, 2, ===, (n-g) 

& (F l F) = 0 

-W 
w = 1, 2, l *=, (g+h+l) 

the solution of which yields the (2n-g+h+l) unknown parameters, px, I&, Dw. 

(33) 

(34) 

(35) 

However, the set of equations (33) - (35) is nonlinear, and their solution, 
even by computer, is a formidable, task. We may take the point of view that identifi- 
cation is periodically repeated at judiciously selected intervals such that approximate 
values for px, s, and Dw are known. In this case we write 

pX = P,; + Apx 

KX 
=K 

xN 
+AK 

X 

D =D +AD 
W wN W 

where the p,N, Is,,, DwN are initial estimates and 
small. The value of V(t) at some generic time tk is 

(36) 

the A( ) quantities are assumed 
then given by 

v (tk) = v* ($) + c + v* (tk) APx 
X X 

+ E (37) 
X 

where the asterisk signifies that the nominal (subscript N) parameters are used. Using 
(36) and (37), the set of equations (33) - (35) are linear and may be solved for Apx, 
AKx, and ADw, thereby determining updated values for px, I$, and D,. 

Once the present values of px, K,, and Dw are known, Eq. (29) completely 
determines the signal v(t). Furthermore, Eq. (29) determines this signal as a sum of 
its individual components. Any component or any group of components can then be 
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separated from the signal v(t) by complting in real time a partial sum which includes 
only the desired components. This separation of the signal components can best be 
done on a digital computer. The out@ of the digital computation can then be con- 
verted, in line, to an “analog” form and used to replace the actual v(t) for the pur- 
poses of control. By this process it is possible to restrict the composition of the 
control signal to only the desired modes of response; for example, the rigid body modes 
of a missile. All other modes, such as the elastic modes, can be filtered out simply 
by leaving them out of the summation of Eq. (29) as carried out on the computer. 
Clearly this filtering operation shouId be effective for filtering any modes for which the 
roots of the characteristic equation, px, are separated by a large distance in the s- 
plane. It is not required that the frequencies be different; only the total distance 
counts. In fact, two modes of the same frequency are effectively filtered if their 
damping is quite different. 

The digital instrumentation of the operation described in the preceding section 
is sketched in Fig. 19. An analog-to-digital converter samples and digitizes the 
measured continuous signal v(t) every T seconds. The present sample is v(NT) where 
N is the total number of samples from the beginning of the operation. A fixed number 
M of the most recent samples is stored in the digital computer. When a new sample 
arrives, it is put at the first address, the other samples are shifted to the left by one 
place, and the oldest sample in the memory is dropped. An equal number of samples 
produced by the computer which represents the present fitted curve is stored in the 
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block below. These latter samples are computed from the present best estimates of the 
parameters px, Kx, and Dw (denoted by pxN, K 

XN 
, and DwN) and jointly represent the 

sampled form over the last T= MT seconds of e v(t) or v(t; px, I$, Dw) signal of 
Eq. (29) through (37). The difference of signals v(t) and v,(t) over the last 7 = MT 
seconds, 

W) = VW - v,(t) (38) 

is used to determine through an inversion of Eqs. (33) - (35) the new estimate pxN+l, 

Kx N+l’ and Dw~+l by Eq. (36). More precisely, the operation is digital, involving the 
sampled form of Q(t), the difference of the samples in the two blocks of Fig. 19. These 
sets of samples can be represented as vectors or column matrices: 

with coordinates 

Qi = Q[(N - M + i)T] 

= v [(N - M + i) T] 

- vm [(N - M + i) T] 

(3% 

(40) 

Naturally, Eqs. (33) - (35) are also set up and inverted in a discrete and 
digital version. ORCe the new estimate pxN+l, KxN+l, and DwN+l iS obtained by the 
computer from the discrete versions of Eqs. (33) - (35) and (36), then the updated 
samples vfiN-M+i)T] for the lower memory block in Fig. 19 can be obtained from Eq. 
(29) and the digital computer is ready to take in the next sample of v,(NT) and repeat 
the outlined cycle. Simultaneously the computer has also obtained such a partial sum 
of Eq. (29) that consists of those modes only which comprise the desired filtered signal 

VfWT). This latter is fed through a digital-to-analog converter directly to the control 
system and the airframe. Note that, ideally, this operation completely suppresses the 
undesirable components of the signal; the filtering is perfect. 

The application of the above ideas to a typical launch vehicle autopilot is 
shown in Fig. 20. 

While the complete signal decomposition and digital filtering process can be 
successfully instrumented with high-speed airborne computers, it undoubtedly puts 
considerable demands on the computer. Thus the process should be simplified. 

This simplification can be achieved if the plant output signal v(t) contains a 
predominant desired mode or modes that are damped at a much faster rate (approxi- 
mately 5 = 0.7) than those signal components to be suppressed (approximately t = 0.005). 
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Figure 20. Application of Digital Adaptive Filter to Launch Vehicle Autopilot 

Let it be assumed that p1 2 = -o! f j/3 represents a damped oscillatory (rigid 
body) mode that comprises v’(t), the desired part of the input signal. Then from (29) 

v’(t) = 2 IK,] c=-~~ co+ + LEl) (41) 

= AC 
-cYt 

cosfit + B < 
-w 

sin fit 

where the constants A and B replace 1 K1l and ,/I&. The total input signal is 

v(t) = v’(t) + v”(t) (42) 

where VII (t) denotes the undesired portion of v(t). 

Assuming that (41) represents the predominant portion of v(t), the problem re- 
duces to one of identifying A, B, Q, and @ by suitable measurements and computer 
computations.? This operation is to be performed each time a sample is received; the 
updated values are available by the time the next sample arrives. It has been found, 

tActually it can be shown that the desired portion of v(t) can be readily identified even 
if the undesired portion, v”(t), is not negligible, providing that the relative damping of 
the latter is small compared to v’(t). See Ref. 14. 
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however, that OL and 6 change very slowly and may be estimated at more widely sep- 
arated intervals than A and B. Accordingly we will describe in detail the estimation 
procedures for A and B (CY and fl assumed kwn and invariant) only. The four-param- 
eter estimation procedure is identical in principle, involving merely a more compli- 
cated “bookkeeping. ” 

From Eqs. (37) and (41) we have 

v’(t) = -at 
v(t) =.ANc 

-at 
cos@t+B F 

N 
sinfit 

-at -at 
(43) 

where AN and BN are the current estimates of A and B respectively. Suppose we have 
available M measurements, denoted by the vector 

v = 
m 

In the present case the set of equations (33) - (35) becomes 

a f F2 (tN-M+i) = 0 a@4 i=l 

(3 

(45) 

a 2 F2 (t,-,,) = ’ (46) 
a W) i=l 

These two equations, which are linear in AA and AB, may be readily solved 
for AA and AB, giving the new estimate 

AN+1 = AN+AA (47) 

B 
N+l 

= BN+AB 
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When the next measurement, vm(tN+l), becomes available, the process is 
repeated using the new estimates above and the measurements, vm(tNmM+2), 

Vm(tN-M+3) I l l l 9 Vm($J+l)* 

In a typical launch vehicle application of the form shown in Fig. 20, v(t) is the 
total error signal, containing the rigid body, bending, and other modes. The digital 
filter output consists essentially of the rigid body portion of v(t) as shown in Eq. (41). 
Subtracting this from the total command error results in a signal that consists essen- 
tially of the signal components associated with the elastic oscillations. 

It is then feasible to close the loop for the vr signal through a compensating 
network, as shown in Fig. 21, that is designed for optimum rigid body response while 
excluding for the purpose of this design the elastic poles and zeros from G(s). Con- 
versely the loop is closed for ve through a compensation designed for optimum damp- 
ing at the bending modes while disregarding for this design the rigid body poles and 
zeros in G(s). If the v, control branch is omitted, the bending modes will oscillate 
open loop and attenuate with the small structural damping. In this latter case the 
digital filter simply prevents closed-loop excitation of the bending modes which might 
make them unstable. 

r I 
V 

ELASTIC BODY 

COMPENSATOR 

DIGITAL “r 

FILTER 
b 

Figure 21. Basic Configuration for Signal Decomposition by Digital Filtering 

The operation of a typical launch vehicle autopilot employing the configuration 
of Fig. 20 is shown in Fig. 22, which illustrates the response to a one-degree step 
command. It is apparent that there is firm control of the vehicle as long as .there is a 
component in the error corresponding to the predominant rigid body modes; that is, 
as long as there is a transient. As the transient signal dies out, however, the digital 
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filter output fades out and the control loop for the airframe opens. This loss of con- 
trol is especially objectionable when the airframe is aerodynamically unstable. 

This feature represents the major problem in the application of the digital 
adaptive filter to launch vehicle control systems. The difficulty is that the digital 
adaptive filter in effect closes the loop for the rigid body transient response but keeps 
the loop open for the body elastic oscillations and all other signals. This open-loop 
operation is the desired condition as far as the body elastic oscillation is concerned. 
However, there are desired signals, such as guidance commands and feedback signals 
resulting from wind shear, that must be transmitted just as the rigid body transients 
are transmitted. The frequency band of these signals is usually significantly lower 
than the frequency of the rigid body transient. In order for the control system to 
respond to these desired signals, the signal rejected by the digital adaptive filter 
(residual) may be passed through a secondary filter as illustrated in Fig. 23. This 
filter will have a low cutoff frequency so that it will adequately pass slowly varying 
command signals yet suppress the elastic oscillations. Analysis indicates that a 
conventional linear filter may be suitable for this secondary filtering operation. The 
combination of the digital adaptive filter and secondary filter will then transmit the 
desired component of the total error signal but will reject body bending oscillations. 

DIGITAL ADAPTIVE FILTER 

r ----------- 
1 FITTED 

E I - 1 CURVI 
CURVE 

I * SEPARATION, ! 

GUIDANCE GUIDANCE COMMAND 1 

COMMAND COMMAND ERROR 

SIGNAL SIGNAL SIGNAL 
I 

SIGNAL ’ I 

! b FADE-IN -b ! b FADE-IN -b 
CURVE CURVE I 
FITTING FITTING 

I ’ I ’ 

FITTED FITTED 

PARAMETERS PARAMETERS 
I 

! ! 

TOTAL PITCH 

ATTITUDE 

Figure 23. Block Diagram of Vehicle Control System with the Digital Adaptive 
Filter and Secondary Linear Filter 
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With a secondary filter added in the manner shown in Fig. 23, the system 
whose response is illustrated in Fig. 22 now exhibits the response shown in Fig. 24. 
It is apparent that there is no longer any loss of control. For best operation the 
secondary filter is cut in when the digital filter output reaches a predetermined level 
(at approximately 2 seconds in Fig. 24). This cut-in time is not critical; there would 
be similar results with a f50% tolerance on this value. 

The response shown in Fig. 24 combines the speed and accuracy of the digital 
filter ccmtrol shown in Fig. 22 with the steady-state stability of the secondary filter. 
A small-amplitude residual oscillation with the low predominant frequency of the 
sluggish secondary filter can be observed in Fig. 24 but the overall response is still 
nearly ideal. 

In Figs. 22 and 24 the system, including the bending modes, was initially at 
rest at time t = 0 when the step input was applied. Fig. 25 shows the system response 
when the three bending modes are already oscillating with a rather high amplitude at 
the time of applying the step input command. It can be observed in Fig. 25 that the 
digital filter output curve regains its clear damped sinusoidal form after the first 
quarter cycle, although in the total error, v(t) = 1 - e(t), the rigid body mode is nearly 
swamped by the presence of the elastic oscillations. During the first quarter cycle of 
approximately 0.5 second the input data are insufficient for positive identification of 
the rigid body mode; consequently some of the bending signal component is seen in the 
digital filter output during this period. Comparison of the digital filter output in Figs. 
22 and 24 reveals that the presence of body bending oscillations does not cause signi- 
ficant deterioration in the rigid body response. The bending modes still oscillate es- 
sentially with open-loop frequency and damping. Different amplitude selections of the 
initial bending oscillations will have varying effects on the late part of the system 
response but the transient remains essentially unaffected as long as the bending ampli- 
tude does not much exceed half the amplitude of the step command. 

What would happen in the case shown in Fig. 25 if no digital filtering were in- 
corporated in the control system is revealed by Fig. 26. Comparison of Figs. 25 and 
26 makes it possible to appreciate the effect of the digital filter with signal decom- 
position in stabilizing the bending modes. 

Instead of using a secondary filter, another possible solution to the loss-of- 
control problem can be the periodic restarting of the fitting process. This simply con- 
sists of periodically resetting the length of the fitting interval to M= 1 sample in the 
computer. Then the computer raises this number one sample at a time until Mmax, 
the ultimate length of the fitting interval, is reached. Such restarting will assure the 
continuous supply of small transients because there always will be some small error 
at the ‘instant of restart. This initial error is then eliminated by the control, action. 
The resulting sequence of successive small transients will assure continued stability. 
It also assures the step-wise follming of any continuous control signals g that may be 
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present. Discontinuities in the command 0, or its lower derivatives must be monitored. 
Such discontinuities mark the start of new transients and should occasion the switching 
to M= 1 and the ensuing development of a new fitting cycle. 

The discussion in the preceding paragraphs assumes that the length of the 
fitting interval is stationary; that is, the length of fitting interval does not change from 
one sample to the next. This typs of operation is only justified if the entire fitting in- 
terval is filled with a single branch of a transient. Consequently the length of the fit- 
ting interval must be made variable when new transients start. Immediately after the 
start of a new transient, the fitting interval will be only one sample. Then the fitting 
interval will gradually increase until it reaches the length of the desired stationary 
fitting interval. This transition is referred to as the fade-in period. 

Two problems arise in conjunction with the fade-in period: 1) it is necessary 
to somehow identify the start of a new transient branch and 2) the quality of curve fit- 
ting during the fade-in period must be investigated. 

For a detailed discussion of this, we must refer the reader to Zaborsky’s 
report@). 

The performance of the Digital Adaptive Filter in a launch vehicle control 
system was extensively investigated via computer simulation@). Some of the results 
are shown in Figs. 27 through 34. The control configuration is as shown in Fig. 23 
where the secondary filter is a simple first-order lag with a cutoff frequency equal 
to one-fourth of the lowest rigid body frequency. The sampling interval in the Digital 
Adaptive Filter was normalized to unity when the number of samples per closed-loop 
rigid body cycle is equal to 25. 

Fig. 27 illustrates the system response to a unit step input when the vehicle 
is completely rigid (no bending modes). Curve fitting in the digital computer is based 
on two parameters, A and B. The response consists of an almost pure second-order 
sinusoid. It is easy to see that this case is handled smoothly ard effectively by the 
Digital Adaptive Filter. The amplitudes, A and B, decay to zero, of course, as the 
error signal approaches zero. 

The same case with one bending mode added is shown in Fig. 28. The rigid 
body is still controlled in a well-damped second-order mode while the bending mode 
operates essentially open loop with a slight structural damping, as shown by the com- 
mand error signal curve. Note that the rigid body control remains tight and stable 
even when the bending oscillation greatly exceeds the rigid body component. 

The response to an alternating step input is shown in Figs. 29 through 31. The 
time period between successive step inputs was varied from 100% to 50% of the closed- 
loop rigid body period. An elastic mode oscillation of twice the closed-loop rigid body 
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frequency with a 0.05 damping ratio and an initial condition of 0.2 times the amplitude 
of the command input signal was present in these runs. In Fig. 29 the period of the 
input is long enough so that the fitted curve is completely determined. In Figs. 30 
and 31 the curve fitting process. is interrupted by the alternating input. It may be seen 
that the rigid body outplt response remains stable and tight. ‘Ihe noticeable increase 
in the body bending component shown in the command error signal of Fig. 30 at the 
initiation of several of the new step inputs is attributed to two facts: 

a. The curve fitting process does not start until the fourth sample, thus allowing a 
new unfiltered excitation to the bending mode. 

b. The phase relationship between the.bending frequency and the input is less favor- 
able to curve fitting as each succeeding step is applied. 

Note that the succeeding steps of Fig. 31 do not produce the same trend. 

Fig. 32 shows the response to a ramp input. Since the system used here has 
only one integration in the open loop, a steady-state error will develop in the rigid 
body output response. This is clearly observed in the figure. Also apparent is the 
fact that the rigid body output increases smoothly in one cycle (25 samples) to the 
steady-state condition. This indicates that the digital filter separates the correct 
“fitted curve” from a “command error. ” Although the fitted curve goes to zero, a 
residual error signal is transmitted through the secondary filter so that the modified 
error signal is not zero and the system continues to follow the ramp command. 

The time required to establish a “fitted output” depends strongly on the 
number of samples used per fitting interval. From the standpoint of economy in the 
airborne computer it is desirable to reduce the number of samples as much as is 
possible without deterioration in performance. Fig. 33 shows both the rigid body out- 
put response and the command error signal for four runs in which the number of 
samples per rigid body cycle is varied from 8 to 50. The response curves shown in 
Fig. 33 all contain a body bending oscillation of twice the closed-loop rigid body fre- 
quency and an initial amplitude of 0.2 times the command error signal. The response 
with both 25 and 50 samples is good, and very little difference may be noted between 
these runs. A moderate departure in the response may be noted when 12 samples are 
used, and a substantial departure may be noted when only 8 samples are used. 

It may be concluded that the number of samples per closed-loop rigid body 
cycle can be held to approximately 12 if necessary, although a greater number of 
samples is desirable if computation time is available in the computer. 

The most dramatic feature of the Digital Adaptive Filter is its capability to 
separate the predominant rigid body mode from the bending mode even when the two 
are equal in frequency. This condition is illustrated in Fig. 34. 
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Remark: The Digital Adaptive Filter scheme is an ingenious and powerful method for 
removing parasitic signals in a control system. It is severely limited (at 
least as far as application to launch vehicle autopilots is concerned) by the 
fact that its ability to respond to disturbance (wind) inputs is questionable. 
In Ref. 6 the combined command and disturbance inputs have been simulated 
and the performance appears to be adequate. However, no simulation results 
with a pure disturbance input are shown. As a matter of fact, NASA engi- 
neers, with access to an as yet unpublished study on this problem, reported 
that(2) 

“This method appears to.be feasible only when the component of the 
gimbal input signal, due to the command inputs, dominates the 
component due to the disturbances, and the commands are of a 
specified form. Since wind disturbances grossly override command 
inputs from the guidance system, the digital adaptive filter does 
not appear to be applicable for launch-vehicle uses.” 

Thus while the Digital Adaptive Filter system has provided an elegant solution 
to the main problem, its application to launch vehicle autopilots is frustrated by dif- 
ficulties that present no problem in conventional approaches. Whether some bright 
control engineer will be blessed with new insight to revitalize this method remains to 
be seen. 

3.4 NOTCH FILTER METHODS 

A simple and highly effective way to gain stabilize the bending modes in a 
feedback control system is to employ notch filters whose resonant frequencies are 
set equal to the bending mode frequencies. There are two fundamental difficulties in 
this approach; namely the bending mode frequencies are not known a priori with suf- 
ficient accuracy, and they vary with flight time due to variation in vehicle inertial 
properties. 

It would appear that if one could track the bending mode frequencies auto- 
matically during flight and use this information to vary the resonant frequency of a 
notch filter accordingly, the problem would be solved. This approach has indeed been 
studied extensively and the methods proposed differ only’in the means whereby the 
bending mode frequencies are identified and in the manner of mechanizing the notch 
filter. The two most promising techniques are discussed below. 

3.4.1 Spectral Identification Filter 

Because of the elastic oscillatory motion of the vehicle, the control system 
sensors (angular displacement, rate, etc. ) will contain signals at the bending mode 
frequencies in addition to those reflecting rigid body motion. The basic principle in 
the spectral identification method is that if the power spectral density of the sensor 
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output is measured, there will be peaks at the bending mode frequencies. The pro- 
blem is then one of mechanizing some scheme whereby these peaks are identified, and 
using this information to set the notch filter resonant frequency. A schematic of the 
overall control system configuration is shown in Fig. 35. It is assumed that only the 
first three bending modes are significant, and therefore three notch filters are used. 
Note that by using two rate gyros (located at two different points along the vehicle) and 
subtracting their outputs, a signal is obtained which is free of rigid body information. 
Thus the input to the spectral filters consists only of bending mode signals. The out- 
put of the spectral filters (shown by the dotted lines in Fig. 35) is used to set the 
resonant frequency of the notch filters. The crucial element in this configuration is 
the spectral frequency identification system. This will now be examined in some 
detail. 

NOTCH NOTCH NOTCH 
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! ! ! 
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I DISPLACEMENT I 
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Figure 35. Spectral Identification Adaptive Control System 

A typical input to the spectral filter will have the form shown in Fig. 36. 
This signal is, in general, nonperiodic so it cannot be represented as a summation of 
terms with discrete frequencies (Fourier series). In fact, f(t) contains components at 
all frequencies. To obtain a representation of f(t) as a function of frequency, o, we 
may proceed as follows. t 

Define a function fT(t) such that 

f,(t) = f(t) t + t <$ = 0 otherwise (49) 

t The mathematically sophisticated reader will recognize the following presentation as 
a heuristic development of the basic results of Fourier Integral theory. 
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Figure 36. Typical Input to Spectral Filter 

This function is illustrated in Fig. 37. If the graph of fT(t) is repeated every 
T seconds, we obtain a periodic function of period T, which is expressible as a Fourier 
series. It would appear plausible that as T is increased without limit, the Fourier 
series for fT(t) will approach that of f(t). 

Figure 37. Truncated f(t) Curve 
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Since fT(t) has been prolonged as a periodic function, its Fourier series is 
obtain?d in the usual way, as follows. 

fT(t) = $ a0 + cos T t + b sin T 
n 

where 

an = $L<T(t) (cos y t)dJ (51) 
-- 

2 

bn = $L’fT(t) bin T.t) dt (52) 

If we let 

A 
T =-a 

n 2 n 
B Tb =- 

n 2 n 

LL’ 2nn - 
n T 

then the preceding relations become 

f,(t) =2 +$g (Ancosunt+BnsinWnt) 
n=l 

T 

I- 
T 

A = 
n T 

f(t) cos wn t dt 
-- 

2 

T - 

B = 
/ 

2 
n 

T 
f(t) sin wn t dt 

-- 

(50) 

(53) 

(54) 

(55) 

2 
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We now define the quantity 

AU =o -w 
n n+l n 

= 2n @+I) 2an -- 
T T 

By substituting this in (53), the latter becomes 

fT(t) = 2 + + $I (An cos wn t + Bn sin Wn t)Aun (56) 

However, since W. = 0, we may write 

A 
0 

A0 AU 
0 -= 

T 2n 

A0 cos w. t 
= 

2n 
AU 

0 

AO 
After adding and subtracting7 to Eq. (56) we obtain 

fT(t) = - 2 + $ go (An cos wn t + Bn sin wn t)Awn (57) 

It seems reasonable to suppose that as T approaches infinity, the infinite 
summation above approaches an integral. This can indeed be established rigorously.? 

- Equation (57) then takes the form 

m co 

(cos cr: t) dw + 
/ 

B(w) (sin w t) d w 
0 

(56) 

tSee any standard text on Fourier integrals. 
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where 

03 

A(w) = f 
/ 

f(t) (cos wt) dt 

0 

Q) 

B(o) = 4 
/ 

f(t) (sin o t) dt 

0 

(59) 

Equation (58) is one form of the Fourier Integral. The functions A(w) and 
B(U) are the cosine and sine transforms, or Fourier transforms, of the function f(t). 

Note that in a Fourier series we get contributions from integral values of %$. 
In a Fourier integral there are contributions from every real value of w. 

For present purposes the ‘importance of the representation (58) is that the 
total squared amplitude of f(t) at the frequency uk is 

A2 @k) + B2 (wk) (6 1) 

A spectral filter, tuned to Wk, is merely a device that computes the quantity 
(61). In practice, the interval of integration in Eq. (59) and (60) is computed with 
sufficient accuracy for a time length equivalent to approximately five periods of the 
spectral tuned frequency wk. 

For application to a control system configuration of the type shown in Fig. 35, 
24 spectral filters were used to span the expected frequency range of the bending 
modes. (8) Because the spectral filter out@ amplitudes will be greatest when the 
tuned frequency of the spectral filter is near a bending frequency, the three tuned fre- 
quencies associated with the three spectral filters having the largest amplitudes are 
used to set the resonant frequencies of the three notch filters. 

With 24 spectral filters in the system the rapid computation of the integrals 
(59) and (60) may impose excessive requirements on the airborne computer. In Ref. 8 
the approximate values of A(w) and B(w) were computed by replacing the sine and 
cosine functions by a square wave of amplitudes +l and -1, with the sign change oc- 
curring when the respective sine or cosine functions changed sign. This resulted in 
a significant reduction in computer complexity without markedly impairing system 
performance. For a thorough analysis of the system the reader is referred to the 
Autonetics Technical Summary report(8). 
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Remark: The technical feasibility of the Spectral Identification Adaptive Control sys- 
tem has been established by extensive computer simulation. Applied to a 
launch vehicle of the Saturn class, the computer requirements are a 
memory capacity of approximately 2000 words (word length = 16 bits) and a 
5-psec add time. 

It has been found that if a bending mode is well stabilized and its exci- 
tation is low, then the identification is poor. On the other hand, when the 
bending mode stability is poor, the bending energy is high and the bending 
frequencies are well identified by the spectral system. The performance 
variation is thus in the proper direction. 

This same study(8) also noted that the third-mode identification was, in 
general, poorer than either the first- or the second-mode identification. 
This was attributed to several possible causes: 

a. There is an attenuation of high frequencies due to system lags, and thus 
the third-mode energy is in general lower than the first- and second- 
mode energy. 

b. The spectral filter accuracy decreases as the number of samples per 
tuned frequency period decreases, thus the accuracy of the higher- 
frequency spectral filters is not as. high as the lower-frequency spectral 
filters. 

c. The actual frequency being identified is the closed-loop bending fre- 
quency, which may shift more radically for the third bending mode. 

The general question of how close the lpwest bending mode frequency 
can be to the rigid body frequency without having the notch filter phase lag 
deteriorate rigid body response to unacceptable proportions, has not been 
investigated . 

3.4.2 Adaptive Tracking Filter 

Instead of performing the frequency tracking and filtering functions separately, 
it is possible to mechanize a device that tracks the bending mode frequency continuously 
(instead of in discrete fashion as in Section 3.4.2) and sets the notch filter resonant 
frequency accordingly. This concept has been mechanized in various ways. (g-13) 

The principle of operation of one type of frequency sensor may be described 
with reference to Fig. 38. For simplicity we assume that em is a sinusoid of the form 

e. in 
= A sin (tit + 0~) 
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Figure 38. Frequency Sensor Principle of Operation 

Consequently it satisfies the equation 

. . 
e 

in 
+u2e 

in 
= 0 

This suggests a type of feedback system of the form shown. If the output of 
the integrator is initially zero, a nonzero voltage will appear at the output of the sum- 
ming junction. This in turn produces a voltage at the out@ of the integrator which 
causes ein UT2 to be nonzero. When the null position is reached (ec = 0), the output 
of the integrator, UT, is exactly equal to w, the frequency of the input signal. 

Of cOurse the use of pure differentiation renders this scheme quite impracti- 
Cd. A usable form of this principle is shown in Fig. 39. Here the use of a double lag 
filter in conjunction with the differentiation limits the high-frequency (noise) amplifi- 
cation. An identical lag filter is used in the parallel loop to preserve the phase re- 
lationship. In this circuit it is assumed that the input signal ein is composed of several 
sinusoids. A constant voltage wM is summed with the integrator output to assure that 
only signals whose frequency exceeds wM will be sensed. The function of the input 
filter is to assure that only that sinusoid of lowest frequency (greater than oM) is oper- 
ated upon. This input filter has a transfer function of the form 

2 
el WT -= 
e 

in s2+25 
2 

TUT 
s +w T 

If the integrator output is initially zero, then mT = wM, and since ec is posi- 
tive, UT increases. Denoting by UR the lowest frequency in em greater than wM, we 
see that when UT = WR the output from this filter, denoted by e2, will contain the 
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Figure 39. A Practical Frequency Tracker 

signal of frequency COK highly amplified and all higher frequency signals sharply at- 
tenuated . Effectively then, e 1 will contain only the signal of frequency UK, and in-the 
null state, UT will equal WK. 

A simplified dynamic analysis of this scheme may be performed to obtain some 
crude estimates of performance quality. For this purpose we may neglect the influence 
of the input and double lag filters, in which case it is readily found that.wT satisfies the 
equation 

. 
WT lk’,l - uT2 el ’ ‘I 

If it is assumed that el is a sinusoid of the form 

el 
= Asinwt 

then it follows that 

(62) 

&T 2 2 
+W =W 

AK lsin wtl T 
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Here A, K, and W are positive constants. The solution of Eq. (63) is w 
s +lanfi 

OT 
=w i 1 OO 

l+~tan@ 

(64) 

where 

wO = 0,(o) 

/j = 2AK(.+sin’y) 

cr: t 
n =- 

0 n 

and < > denotes the maximum integer of the argument; e.g. , y 0 = 5. 

It is noted that the system is inherently stable (in this simplified version). 
Furthermore, the manner in which the input signal amplitude, integrator gain, and 
initial setting of UT 
explicitly. 

influence the speed with which mT approaches CL’ is indicated 

A means whereby the signal frequency is tracked and the notch filter resonant 
frequency set automatically is shown in the schematic of Fig. 40. 

The demodulator is half wave and phase sensitive with a transistor switch 
performing the demodulation function. To describe the operation, we assume that em 
is composed of a single signal of fixed frequency. Now since ein’ and el differ in phase 
only by the contribution of the (KT s2 + 1) term, we see that ein’ is either in phase or 
180’ out of phase with el. Assuming that the resonant frequency of the notch filter is 
above the frequency of the input signal ein, we note that ein’ and el are in phase. Con- 
sequently, the demodulator output is positive, which in turn acts to increase KT, there- 
by causing the resonant frequency of the notch filter to decrease. If the notch filter 
resonant frequency is below the input signal frequency, then ein’ and ei are 180” out 
of phase and the reverse occurs. When the two frequencies are equal then the phase 
difference between ein’ and eI is 90” and the average value of e, is zero and eK nulls to 
a fixed value that is a measure of the input signal frequency. 
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Figure 40. An Adaptive Tracking Notch Filter 

It is easy to see that in the steady state, the overall transfer function is 

KT s2 + 1 

e 
in KTs2+r2s+I 

where 

1 
K =- 

T &J2 
a 

w 
a 

= frequency of input sinusoid, ein 

The bandpass filters have the transfer function 

T3 
2 s2 

(k3 s + g2 

These are designed to attenuate low-frequency (rigid body) signals. As a further pre- 
caution against tracking low-frequency signals, a lower limit may be set on the inte- 
grator output, thereby preventing the notch filter resonant frequency from tuning to a 

I 
1 
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rigid body frequency. Another means of ensuring that rigid body signals are not 
tracked is to feed the difference of two gyro signals into the unit, thereby effectively 
removing the rigid body content from the frequency tracking input. 

Fig. 41 is a detailed schematic of the system shown in Fig. 40. ‘Ihe ampli- 
fier gain K was varied by using in the amplifier feedback’loop a variable gain poten- 
tiometer driven by a servo motor whose input signal was the integrator output. This 
system, which was built as a breadboard model, is discussed in detail in Refs. 9 
and 11. A typical result obtained with this unit is shown in Fig. 42. 

The most extensive analysis to date of the tracking notch filter concept and 
its application to launch vehicle autopilots is the one by Cunningham and Schaeperkotter(14) 
which was performed in the course of a NASA-funded study. Included in this study were 

a. Time required to track the frequency as a function of this frequency. 

b. Tracking error. 

c. Attainable notch attenuation. 

. I 
13.4 ND P.4SS 

+ FII.TER - 
I --. __~~ 

h, s + I) (T2 s + I) 
DEMODI. LhTOR 

UAmPASS 
FILTER + 

Figure 41. Schematic of Adaptive Tracking Notch Filter 
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b. OUTPUT SIGNAL, eat 

c. INTEGRATOR OUTPUT. ek 

Figure 42. Typical Operation of Adaptive Tracking Filter 

d. Demodulator properties. 

e. Effect of higher harmonics. 

f. Multiple frequency inputs. 

The adaptive tracking filter analyzed by Cunningham and Schaeperkotter is 
shown in Fig. 43. This is a somewhat more generalized version than the types con- 
sidered thus far, and has the capability for a variety of specialized operations. For 
a constant wp it is readily found that 

e xc s2 +a 2 
out wPs+x w a P -= 
e. s2+2(pwps +w 2 in 

P 

(65) 

This has the general form of a complex lag-lead network. The important 
feature here is that after the bending mode frequency has been tracked, the filter 
may be used for phase stabilization of the bending mode rather than gain stabilization, 
which is achieved by the use of a notch filter. 
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I . 
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FREQUENCY SENSOR ‘------------------q 

I 

Figure 43. Schematic of Adaptive Tracking Filter 

With phase stabilization the control system provides the proper gain and 
phase characteristics at the bending mode frequency to obtain a closed-loop damping 
of the mode greater than the open-loop damping. Gain stabilization, on the other hand, 
provides enough attenuation at the bending mode frequency to ensure system stability 
regardless of the bending mode phase. Depending on the specific application, one 
type may exhibit superior features over the other. 

To use the configuration of Fig. 43 as a notch filter, we simply put Xb = 0, 
and xa = xc = 1; viz. 

e S2 
2 

out +&J 
-= P 
e 

in s2 +2 
t;p 

2 
0 s+w 

P P 

(66) 

Typical frequency response characteristics of the two types are shown in 
Figs. 44 and 45. 
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15 I 1 I I 1 I 
PARAMETER VALUES: A = 1. A = A = 0.8 0.08. 

b C 
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-200 I 1 .L. 
0.1 0.2 0.4 0.6 1 0.8 2 4 6 8 
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-80 ---v--p 

.I -1 

J - 
4 6 8 10 0.1 0.2 0.4 0.6 0.8 1 -2 

NORMALIZEDFREQUENCY,w/op 

Figure 44. Frequency Response of Lag-Lead Filter, Eq. (65) 

62 



-30 . 

-40 - 

-50. 
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Figure 45. Frequency Response of Notch Filter, Eq. (66) 
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In the Frequency Sensor portion of Fig. 43 there exiete the capability for 
three types of reference signal er for the demodulator, depending on the position of 
switches S1 and S2. 

We designate these as follows: 

CASE 

I 
II 
III 

SWITCH TYPE 

s1 s2 - - 

Closed Open High Pace 
Open Closed Low Pass 
Closed Closed All Pace 

The respective er/ein transfer function and frequency reeponee characteristics 
are shown in Fig. 46. A eelection of a particular type is determined by the specific 
application, For a launch vehicle autopilot the use of case I ie indicated since it ie 
desirable to filter out the rigid body and.propellant eloeh frequenciee ae much a8 
possible. 

It remains to examine the operation of the demodulator. We will investigate 
three types that are capable of detecting the phase angle between the input and refer- 
ence signals. These are the multiplier, chopper, and double chopper demodulators. 

MAGNITUDE PHASE 

I I 

CASE 

e r *2 -= 
e. 2 

in s2+25 w s +w 
P P P 

2 
e -W 

r -3 P 
e 

in s2+2~pwps+w 
2 

P 

2 2 
e S -w 

r P -= 
e 2 

in s2+2~pwps+w 
P 

ALL PASS 

I 

wP wP 

Figure 46. Reference/Input Signal Transfer Functions 
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For ease of exposition assume that the input signal contains a single fre- 
quency; viz. 

e. 111 
= Asinwat (67) 

If W, > W an examination of Fig. 46 shows that the reference signal e, leads 
the input by an ang e cp that is between zero and SO degrees. P Therefore we write 

e 
r = Csin(foat+~) w3) 

oQp-=s~ 

The output for each of the three types of demodulators is shown in Fig. 47. 
It is apparent that the average value of demoduiator output ed is positive in each case. 
For the multiplier .type we have 

1 

/ 

2ll 

ed av = 
I 

% 
ACsinwatsin(tat+(p)d(wat) 

0 

= +AC coscp (69) 

CHOPPER 

Cd = [SW (c,.) lCi” 

Dl%BLE CHOPPER 

NOTES: 1. e. =A sin (wa t) 
I” 

2. e I- = C sin (h; L + 0) 

3. ADAPTNE TRACKING FILTER FREQt’ENCY 

BELOW INPUT FREQUENCY (0 < (3 c ;) 

Figure 47. Operation of Various Types of Demodulators 
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Whenup =wa, that is, when 56 = SO” , we see that the average value of ed is 
zero, indicating that in the steady state the resonant frequency of the filter is equal to 
the frequency of the input signal. 

After expressing the output of the chopper demodulator in a Fourier series, 
the fundamental (d.c .) component is found to be 

2A COSCP 
ed 

I fund. 
= n 

Similarly, for the double chopper type, ’ 

edlfund. 
= 

(70) 

(71) 

Thus in each case the average output of the demodulator is zero when cp = 90” . 
The effect of higher harmonics is investigated in the Cunningham and Schaeperkotter 
report. 

A similar analysis shows that when w, < wp (and therefore e, leads ein by an 
angle (b such that 90” < cp < 180’) the system tends to decrease wp and lead to the steady- 
state cp = 90” with LL) 

P = ma. 

A schematic of the complete autopilot employing two adaptive tracking filters 
is shown in Fig. 48. Extensive simulation studies of this system as applied to the 
Saturn IB vehicle are contained in Ref. 14. 

Remark: Many studies have shown that the adaptive tracking filter concept is feasible 
and practical. Among the objections that may be leveled against it are that 
the instrumentation is relatively complex and therefore involves a com- 
promise with reliability. There are also lower limits in the ratio of allow- 
able first bending mode to rigid body frequency. Nevertheless this approach 
is a prime candidate for adaptive control of highly flexible launch vehicles. 

3.5 FREQUENCY-INDEPENDENT SIGNAL PROCESSING 

The method to be described here is not, strictly speaking, an adaptive 
technique since it presupposes a knowledge of bending mode data, and all gains and 
compensation are designed a priori. It is, however, a novel solution to the problem 
of separating rigid body from bending mode signals, whatever the ratio of the re- 
spective frequencies. Unlike passive filtering methods the desired (rigid body) signal 
is generated free of any phase lag or attenuation and (theoretically) free of all parasitic 
modes. The method involves the use of “processing functions” and requires that the 
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6 
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DlSPLACEMENT 
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Figure 48. Control System Utilizing Adaptive Tracking Filters 

number of sensing elements be equal to the number of modes of motion considered. 
Rejection of parasitic mode signals’ is accomplished by making the processing func- 
tion associated with each sensing element a prescribed function of modal slopes or 
displacements. 

The advantages of this method are its simplicity and the absence of any need 
for onboard computational capability. Since the modal data are assumed kmnvn, the 
processing functions may be precomplted and no further onboard computations are 
required. Also, because of the fact that the method does not rely on the relative fre- 
quencies of the closed-loop rigid body and elastic modes, the separation and rejection 
of bending motion are accomplished even in situations where a bending frequency 
coincides with a closed-loop rigid body frequency. 

The main idea is due to Howard(15). The ensuing discussion essentially 
parallels his presentation. 

According to Eq. (AlO) the displacement gyro out@ is 

(j = f+ + c (.$ ,(i) 
i 

For notational convenience in the following discussion we will write this as 

ei = OR + 2 uij q(i) 
j=l 
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where 

ei q output of displacement gyro located at station i along the vehicle 

u.. = 
11 

the bending mode slope of the jth bending mode at location i 

n E number of bending modes 

If there are n+l gyros at n+l locations, then from Eq. (72) we have 

a1 - 

e2 
. 
. 
. 

‘n 

9 n+T - - 

= 

0 
- 

10 011 . . . . uh 

u20 u21- - *c2n 
. . . 
. . . 
. . . 

a 
n0 

0 cr 
nl - ‘* - nn 

u 
n+l,O 

U n+l,l - - . - On+l,n - 

-1 

6, 

qu) 

’ 
qw 

. 

. 

. 

,@) 
J 

(73) 

where 

U 
i0 

= 1 for i = 1, 2,.*00, n+l 

This may be expressed concisely in matrix notation as fol OWS. 

0 = uq 

Solving for the column vector q, 

4 = u-l@ 

where 

CI 
I 

0 =20 . . . & 0 c- n+l, 0 

=I1 =21 . . . c, 1 & +1,1 
u-1 =$ 

c1 2 % c, 2”’ 2 c 
. n+l, 2 . . . . . 

L 
. . . . . ?l n q n- * l Tl n c’ n+l,n - 

(74) 

(75) 

(76) 
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D = det [CT] 

ti, Cij is the cofactor Of the element Uij ill the D.B3thX U. 

Eq. (75) gives lhe rigid body rotation 8, and the n generalized coordinates 
q(i) as functions of the measured outplts from the n+l sensors and the known modal 
data. In particular, 

1 
n+l 

BR =jIj- c 
i=l 

‘Cio ei 

If we define 

c. 
Pi (0) = 2 

then (77) may be written as 

n+l 
Pi @J) ei 

(77) 

(76) 

(79) 

The quantity Pi(u) is called the attitude processing function, which is a function 
of the modal data only (assumed known). Consequently, if n bending modes are signifi- 
cant, then the use of n+l sensors, together with the known attitude processing functions, 
Pi(U), is sufficient to generate the rigid body rotation signal % free of all bending mode 
information. 

A similar analysis for the rate gyros shows that 

n+l . 

eR = i=l x Pi (0) ii (80) 

. 
where ei is the outplt of the rate gyro located at station i, and Pi(U) is as defined by (78). 

In the case of n=2, for example (which presupposes that bending modes higher 
than the second may be neglected), we find that 

3 

‘R = i=l c Pi (0) 8. 1 
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. 

where 

G 
P,(u) = + = + 

21’32 - ‘22 ‘31 

c 
1 

P,(u) = + = - 
D 11 O32 - ‘12 u31 

c 
P,(u) =+ 

Ho22 -“12u21 

21’32 - u22 u31 - ‘12 ‘31 I( + ‘11’22 - u12 O21 

and similarly for the rate signals. 

We see that the attitude processing functions are “gains” to be used with the 
gyro outputs (e 1, 8,, 13~) to generate a signal free of bending mode information. The 
scheme is implemented in the manner shawn in Fig. 49. 

VEHICLE DYNAMICS 1 
, 

. 2 
‘21’32 - ‘22 ‘31 81 WRl ’ 

I 
s2 +2 s iUR12 

4 
D R 1”Rl 

-k II032 -a12u31 ) 4 
D 

, 
. 

Oil O22 -O12 O21 83 
2s 

uR3 4 
D s2 +2(: 

R3 WR3 ’ + uR32 

“21’32 - O22 O31 DISP. 

D GYRO 

% 4 - -b e2 DISP. 

D GYRO - 
c 

Figure 49. Block Diagram of System for Processing Attitude and Attitude Rate Signals : 
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Remark: ~- Subject to the stipulation that bending male data are known, the above method 
is an elegant and attractive means of obtaining a theoretically perfect fil- 
tering of bending mode signals, which is in no way affected by the frequency 
separation between the desired and parasitic signals. Extra sensors are 
the only additional equipment required and there is no need for “exotic” 
signal processing. 

In application to real vehicles there are two obviam limitations: 1) 
there are inherent limits in the accuracy of bending mode data, and 2) ihe 
bending mode properties vary with flight time due to varying inertial pro- 
perties of the vehicle as fuel. is expended. 

Howard’s study(15) includes an extensive investigation of the influence 
of errors in modal data on the closed-loop stability of the system. For a 
typical launch vehicle it was found that when the amplitude of the rigid body 
pitch attitude is greater than or equal to the amplitude of the bending motion 
at the nose of the vehicle, the error in the pitch attitude output will always 
be less than 16 percent if the modal slope errors do not exceed either +50% 
or -50%. 

An analysis of the influence of modal errors on the stability of the 
closed-loop system indicated that certain combinations of modal errors tend 
to degrade stability of at least one of the bending modes, whereas other 
combinations of modal errors tend to enhance bending mode stability. For 
modal errors of 10% or less, and those combinations of modal errors that 
tend to degrade stability, no instability occurred in either mode when the 
loop was closed with nominal gain. The results indicate, however, that for 
the nominal range of gain considered, the first bending mode is more sensi- 
tive to errors in the modal data than the second and, presumably, higher 
bending modes. 

It has been shown that when the error coefficients are positive, stability 
is maintained without degradation. This’suggests that an attempt be made to 
bias the nominal value of the modal slopes in such a way as to ensure that the 
error coefficients are always positive. Examination of the tabulated data for 
a typical vehicle reveals that it is possible to do this for a range of modal 
error. This is equivalent to the use of structural feedback to stabilize the 
bending modes in the presence of errors in the modal data. 

As far as the time-varying properties of. the modal data are concerned, 
it would appear that gain switching in the attitude processing functions at 
preselected intervals would be a plausible solution. However, this must be 
investigated in detail for each particular vehicle. 
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APPENDIX 

VEHICLE DYNAMICS 

The equations of motion and conventional control techniques for a launch ve- 
hicle are described in Refs. 1 and 16. For purposes of completeness, and pertinent 
to the needs of the present monograph, a simplified summary of the equations that 
describe the system dynamics are presented below. 

m(G -IJoiR) = Tcb -Lacy 

( s2 + 2 $ wi s + oi 2 q(i) 
> 

s % 

a=*+, 
0 w 

W 
W cy =-- 

W 
uO 

Rate gyro output 

fj = 6, + c aGo) p 
1 

Displacement gyro output 

0 =eR+ c 
0) ,W 

i =G 

VW 

W) 

(A3) 

i=l, 2, 0.. 

(A41 

(As) 

646) 

(A71 

w3) 

W’) 

(AlO) 
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Rending displacement 

u = c qP (a) q(i) (t) 
i 

(All) 

The vehicle geometry and sign conventions are shown in Figs. Al and A2. 
Typical normalized mode shapes are shown in Fig. A3. Nomenclature is defined as 

follows: 

I = moment of inertia of vehicle about pitch axis 

KA = servoamplifier gain 

j Kc = engine servo gain 

KI = integrator gain 

KR = rate gyro gain 

Figure Al. Vehicle Geometry 
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Figure A2. Sign Convention for Bending Parameters 

a = length parameter along vehicle; positive in aft direction 

% 
= distance from vehicle mass center to engine swivel point 

%I! = distance from vehicle mass center to center of pressure 

La = aerodynamic load per unit angle of attack 

m = mass of vehicle 

m, = generalized mass of 1 *th bending mode 

qw = generalized coordinate of ith bending mode 

s = Laplace operator 

t = time 

TC 
= control thrust 
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NOTES: 

1. i#) la normdized to unity at engine gimbaI point. 

2. I#) m L2.g. 

Figure A3. Typical Normalized Mode Shapes 

u = bending .deflection 

uO = forward velocity of vehicle 

w = normal velocity of vehicle 

Q = angle of attack 

6 = rcxket engine deflection angle 

6 
C 

= command signal to rocket engine 

E& = rigid body attitude angle 

% = error signal 

eF 
= feedback signal 

ec = command angle 
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c’ot = I&/I 

a(1) = negative slope of ith bending mode = - - 
a&) 
al 

=G 
0) E =(i) (-4~;) = value of a 0 ) at gyro location 

,(i) = normalized mode shape function for 1 ‘th bending mode 

5i’ wi .th = relative damping factor and undamped natural frequency for: I 
bending mode 

Sloshing and engine inertial effects have been neglected. The engine actuator 
has been represented by a simple first-order lag and the gyro dynamics have been 
neglected. This is a valid approximation for studying the lower-frequency elastic 
modes. 

The above model is adequate for exhibiting the salient features of the adaptive 
methods considered in this monograph. 

In studying the stability properties of the system one may also assume that 

KI = 0 

and 

The definition of (Y given by Eq. (A7) is useful mainly in determining response 
to wind inputs. 
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